3.17.47 \(\int \frac {b+2 c x}{\sqrt {d+e x} (a+b x+c x^2)^{3/2}} \, dx\) [1647]

Optimal. Leaf size=290 \[ -\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {\sqrt {2} \sqrt {b^2-4 a c} e \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}} \]

[Out]

-2*((-4*a*c+b^2)*(-b*e+c*d)-c*(-4*a*c+b^2)*e*x)*(e*x+d)^(1/2)/(-4*a*c+b^2)/(a*e^2-b*d*e+c*d^2)/(c*x^2+b*x+a)^(
1/2)-e*EllipticE(1/2*((b+2*c*x+(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(1/2))^(1/2)*2^(1/2),(-2*e*(-4*a*c+b^2)^(1/2)/
(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2))*2^(1/2)*(-4*a*c+b^2)^(1/2)*(e*x+d)^(1/2)*(-c*(c*x^2+b*x+a)/(-4*a*c+b^
2))^(1/2)/(a*e^2-b*d*e+c*d^2)/(c*x^2+b*x+a)^(1/2)/(c*(e*x+d)/(2*c*d-e*(b+(-4*a*c+b^2)^(1/2))))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 290, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {836, 21, 732, 435} \begin {gather*} -\frac {\sqrt {2} e \sqrt {b^2-4 a c} \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\text {ArcSin}\left (\frac {\sqrt {\frac {b+2 c x+\sqrt {b^2-4 a c}}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-e \left (\sqrt {b^2-4 a c}+b\right )}}}-\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c e x \left (b^2-4 a c\right )\right )}{\left (b^2-4 a c\right ) \sqrt {a+b x+c x^2} \left (a e^2-b d e+c d^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(b + 2*c*x)/(Sqrt[d + e*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(-2*Sqrt[d + e*x]*((b^2 - 4*a*c)*(c*d - b*e) - c*(b^2 - 4*a*c)*e*x))/((b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Sq
rt[a + b*x + c*x^2]) - (Sqrt[2]*Sqrt[b^2 - 4*a*c]*e*Sqrt[d + e*x]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]
*EllipticE[ArcSin[Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(
2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/((c*d^2 - b*d*e + a*e^2)*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*
c])*e)]*Sqrt[a + b*x + c*x^2])

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 435

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]

Rule 732

Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)), Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c, 2
])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]

Rule 836

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Dist[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2
*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && (IntegerQ[m] ||
 IntegerQ[p] || IntegersQ[2*m, 2*p])

Rubi steps

\begin {align*} \int \frac {b+2 c x}{\sqrt {d+e x} \left (a+b x+c x^2\right )^{3/2}} \, dx &=-\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {2 \int \frac {\frac {1}{2} c \left (b^2-4 a c\right ) d e+\frac {1}{2} c \left (b^2-4 a c\right ) e^2 x}{\sqrt {d+e x} \sqrt {a+b x+c x^2}} \, dx}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right )}\\ &=-\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {(c e) \int \frac {\sqrt {d+e x}}{\sqrt {a+b x+c x^2}} \, dx}{c d^2-b d e+a e^2}\\ &=-\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {\left (\sqrt {2} \sqrt {b^2-4 a c} e \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}}\right ) \text {Subst}\left (\int \frac {\sqrt {1+\frac {2 \sqrt {b^2-4 a c} e x^2}{2 c d-b e-\sqrt {b^2-4 a c} e}}}{\sqrt {1-x^2}} \, dx,x,\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-b e-\sqrt {b^2-4 a c} e}} \sqrt {a+b x+c x^2}}\\ &=-\frac {2 \sqrt {d+e x} \left (\left (b^2-4 a c\right ) (c d-b e)-c \left (b^2-4 a c\right ) e x\right )}{\left (b^2-4 a c\right ) \left (c d^2-b d e+a e^2\right ) \sqrt {a+b x+c x^2}}-\frac {\sqrt {2} \sqrt {b^2-4 a c} e \sqrt {d+e x} \sqrt {-\frac {c \left (a+b x+c x^2\right )}{b^2-4 a c}} E\left (\sin ^{-1}\left (\frac {\sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x}{\sqrt {b^2-4 a c}}}}{\sqrt {2}}\right )|-\frac {2 \sqrt {b^2-4 a c} e}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}\right )}{\left (c d^2-b d e+a e^2\right ) \sqrt {\frac {c (d+e x)}{2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {a+b x+c x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.78, size = 405, normalized size = 1.40 \begin {gather*} \frac {4 \sqrt {d+e x} (-c d+b e+c e x)-\frac {i \sqrt {2} \left (2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e\right ) \sqrt {\frac {e \left (b+\sqrt {b^2-4 a c}+2 c x\right )}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {1-\frac {2 c (d+e x)}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}} \left (E\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right )|\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )-F\left (i \sinh ^{-1}\left (\sqrt {2} \sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}} \sqrt {d+e x}\right )|\frac {2 c d-\left (b+\sqrt {b^2-4 a c}\right ) e}{2 c d+\left (-b+\sqrt {b^2-4 a c}\right ) e}\right )\right )}{\sqrt {\frac {c}{-2 c d+\left (b+\sqrt {b^2-4 a c}\right ) e}}}}{2 \left (c d^2+e (-b d+a e)\right ) \sqrt {a+x (b+c x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(b + 2*c*x)/(Sqrt[d + e*x]*(a + b*x + c*x^2)^(3/2)),x]

[Out]

(4*Sqrt[d + e*x]*(-(c*d) + b*e + c*e*x) - (I*Sqrt[2]*(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)*Sqrt[(e*(b + Sqrt[b^
2 - 4*a*c] + 2*c*x))/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[1 - (2*c*(d + e*x))/(2*c*d + (-b + Sqrt[b^2 -
4*a*c])*e)]*(EllipticE[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d -
 (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 - 4*a*c])*e)] - EllipticF[I*ArcSinh[Sqrt[2]*Sqrt[c/(-2*c*d
 + (b + Sqrt[b^2 - 4*a*c])*e)]*Sqrt[d + e*x]], (2*c*d - (b + Sqrt[b^2 - 4*a*c])*e)/(2*c*d + (-b + Sqrt[b^2 - 4
*a*c])*e)]))/Sqrt[c/(-2*c*d + (b + Sqrt[b^2 - 4*a*c])*e)])/(2*(c*d^2 + e*(-(b*d) + a*e))*Sqrt[a + x*(b + c*x)]
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1365\) vs. \(2(262)=524\).
time = 1.06, size = 1366, normalized size = 4.71 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2*c*x+b)/(c*x^2+b*x+a)^(3/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*
(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2
^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4
*a*c+b^2)^(1/2)))^(1/2))*a*e^2-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+
b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+
b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*b*d*e+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)
)^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))
*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/
2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d^2-2^(1/2)*(-(e*x+d)*c/(e*(-
4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((
b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c
+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*a*e^
2+2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^2)^(1/2))*e/(2*c*d-b*e+e*(-
4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*EllipticE(2^(
1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a
*c+b^2)^(1/2)))^(1/2))*b*d*e-2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)*((-b-2*c*x+(-4*a*c+b^
2)^(1/2))*e/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2)*((b+2*c*x+(-4*a*c+b^2)^(1/2))*e/(e*(-4*a*c+b^2)^(1/2)+b*e-
2*c*d))^(1/2)*EllipticE(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*
e-2*c*d)/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))^(1/2))*c*d^2-x^2*c*e^2-b*e^2*x-b*d*e+c*d^2)*(c*x^2+b*x+a)^(1/2)*(e*
x+d)^(1/2)/(a*e^2-b*d*e+c*d^2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)/(c*x^2+b*x+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

integrate((2*c*x + b)/((c*x^2 + b*x + a)^(3/2)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.92, size = 506, normalized size = 1.74 \begin {gather*} -\frac {2 \, {\left ({\left (2 \, c^{2} d x^{2} + 2 \, b c d x + 2 \, a c d - {\left (b c x^{2} + b^{2} x + a b\right )} e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right ) - 3 \, {\left (c^{2} x^{2} + b c x + a c\right )} \sqrt {c} e^{\frac {3}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right ) + 3 \, {\left (c^{2} d - {\left (c^{2} x + b c\right )} e\right )} \sqrt {c x^{2} + b x + a} \sqrt {x e + d}\right )}}{3 \, {\left (c^{3} d^{2} x^{2} + b c^{2} d^{2} x + a c^{2} d^{2} + {\left (a c^{2} x^{2} + a b c x + a^{2} c\right )} e^{2} - {\left (b c^{2} d x^{2} + b^{2} c d x + a b c d\right )} e\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)/(c*x^2+b*x+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

-2/3*((2*c^2*d*x^2 + 2*b*c*d*x + 2*a*c*d - (b*c*x^2 + b^2*x + a*b)*e)*sqrt(c)*e^(1/2)*weierstrassPInverse(4/3*
(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e
^2 + (2*b^3 - 9*a*b*c)*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c) - 3*(c^2*x^2 + b*c*x + a*c)*sqrt(c
)*e^(3/2)*weierstrassZeta(4/3*(c^2*d^2 - b*c*d*e + (b^2 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d
^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*a*b*c)*e^3)*e^(-3)/c^3, weierstrassPInverse(4/3*(c^2*d^2 - b*c*d
*e + (b^2 - 3*a*c)*e^2)*e^(-2)/c^2, -4/27*(2*c^3*d^3 - 3*b*c^2*d^2*e - 3*(b^2*c - 6*a*c^2)*d*e^2 + (2*b^3 - 9*
a*b*c)*e^3)*e^(-3)/c^3, 1/3*(c*d + (3*c*x + b)*e)*e^(-1)/c)) + 3*(c^2*d - (c^2*x + b*c)*e)*sqrt(c*x^2 + b*x +
a)*sqrt(x*e + d))/(c^3*d^2*x^2 + b*c^2*d^2*x + a*c^2*d^2 + (a*c^2*x^2 + a*b*c*x + a^2*c)*e^2 - (b*c^2*d*x^2 +
b^2*c*d*x + a*b*c*d)*e)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {b + 2 c x}{\sqrt {d + e x} \left (a + b x + c x^{2}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)/(c*x**2+b*x+a)**(3/2)/(e*x+d)**(1/2),x)

[Out]

Integral((b + 2*c*x)/(sqrt(d + e*x)*(a + b*x + c*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2*c*x+b)/(c*x^2+b*x+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

integrate((2*c*x + b)/((c*x^2 + b*x + a)^(3/2)*sqrt(x*e + d)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {b+2\,c\,x}{\sqrt {d+e\,x}\,{\left (c\,x^2+b\,x+a\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b + 2*c*x)/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(3/2)),x)

[Out]

int((b + 2*c*x)/((d + e*x)^(1/2)*(a + b*x + c*x^2)^(3/2)), x)

________________________________________________________________________________________